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Bethe ansatz equations for the eigenvalues of the transfer matrix of the eight- 
vertex model are solved numerically to yield mass gap data on infinitely long 
strips of up to 512 sites in width. The finite-size corrections, at criticality, to the 
free energy per site and polarization gap are found to be in agreement with 
recent studies of the XJ(Z spin chain. The leading corrections to the finite-size 
scaling estimates of the critical line and thermal exponent are also found, 
providing an explanation of the poor convergence seen in earlier studies. Away 
from criticality, the linear scaling fields are derived exactly in the full parameter 
space of the spin system, allowing a thorough test of a recently proposed 
method of extracting linear scaling fields and related exponents from finite lat- 
tice data. 

KEY WORDS:  Eight-vertex model; Bethe ansatz; finite-size scaling; scaling 
fields. 

1. I N T R O D U C T I O N  

The exact solution of many integrable models in statistical mechanics and 
field theory in one form or another involves the Bethe ansatz and its 
generalizations (see, e.g., Refs. 1 6). Generally, the Bethe ansatz equations 
constitute a set of transcendental equations whose solutions characterize a 
given eigenvalue and corresponding eigenvector of the transfer matrix or 
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quantum Hamiltonian of the model. In the thermodynamic limit, the 
number of equations and solutions becomes infinite, but the equations 
can be transformed ~1'4) to linear integral equations, which, at least for the 
dominant eigenvalues that are required for thermodynamic functions such 
as the free energy or surface tension, can be solved by the use of Fourier 
transform techniques. 

Despite these successes of the Bethe ansatz in the thermodynamic 
limit, little use has been made, until recently, of the Bethe ansatz to 
evaluate quantities on f inite lattices. This is somewhat surprising, since 
solution of the Bethe ansatz equations for a finite system could provide 
considerable information on the behavior of not only the finite system 
itself, but also of the bulk system. In particular, the critical behavior of the 
bulk system could be explored by finite-size scaling techniques (see, e.g., 
Ref. 7). 

De Vega and Woynarovich Is) have recently developed a systematic 
procedure, based on the integral equation approach, for calculating the 
leading-order finite-size corrections for any model admitting a Bethe 
ansatz-type solution. This method was subsequently applied to the non- 
critical region of the X X Z  Heisenberg chain. ~s) Hamer ~176 and 
Woynarovich and Eckle (11) have, however, shown how to extend the 
method to calculate finite-size corrections at criticality, and hence to infer 
critical exponents of the bulk X X Z  system. Similar work has been reported 
for the X Y Z  chain (12) and the eight-vertex model. (13) 

The method of de Vega and Woynarovich represents the solution of 
the Bethe ansatz equations for a large, finite system as a perturbation (by a 
sum of delta functions) of the density function that describes the solutions 
for the infinite lattice. An alternative approach to exploit the Bethe ansatz 
for a finite lattice is to solve directly the (finite) set of equations for the 
(finite) number of solutions characterizing the eigenvalues of the finite 
lattice theory. This is the approach we adopt here for the eight-vertex 
model; critical parameters are obtained by finite-size scaling techniques. 

Several attempts at direct solution of the Bethe ansatz equations for a 
finite lattice have been reported for the isotropic Heisenberg chain. In par- 
ticular, Grieger (14) and Borysowicz etal.  (15) have computed ground-state 
correlation functions. Avdeev and D6rfel (16) have obtained the leading 
correction to the ground-state energy and explored the way in which the 
density of solutions approaches the bulk limit solution of the integral 
equation. Woynarovich and Eckle (H) have computed the lowest state in the 
two largest sectors of the critical X X Z  chain, complementing their analytic 
analysis of the dominant finite-size corrections appearing in the model. 

Recently Alcaraz et al. (17 19) have numerically solved the Bethe ansatz 
equations of the critical X X Z  chain subject to periodic, "twisted," and free 
boundary conditions for several states as a means of calculating mass gap 
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amplitudes in the critical q-state Potts and Ashkin-Teller chains. This 
considerably extended the previous numerical estimates of bulk and surface 
exponents and allowed an examination of the dominant finite-size correc- 
tions appearing in the models. 

In this paper, we directly solve the Bethe ansatz equations for the 
eight-vertex model. Our motivation, beyond the solution itself of the 
equations, is to explore the convergence of finite-size scaling and related 
techniques for this model. Early finite-size calculations (2~ for the eight- 
vertex model were based on finite lattice data obtained by direct 
diagonalization of the transfer matrix in the spin formulation. As a result, 
eigenvalue data were restricted to strips of width up to 16 sites. While the 
estimates of bulk critical exponents were quite consistent with the exact 
results, several aspects warrant further investigation with data from larger 
lattices. Conventional phenomenological renormalization estimates con- 
verge well for small values of the four-spin coupling. However, the con- 
vergence deteriorates significantly as the four-spin coupling increases and 
indeed appears to become nonmonotonic. Data from large strips would 
clearly allow a nontrivial test of finite-size scaling and related techniques 
for a system with nonuniversal behavior. 

The arrangement and content of this paper are as follows. In Section 2, 
we reformulate and examine the Bethe ansatz equations of the eight-vertex 
model. We then proceed to solve these equations numerically for the two 
simplest distributions of zeros. In Section 3 we define a mass gap from the 
corresponding eigenvalues and discuss the convergence rates of finite-size 
estimates of the critical line and thermal exponent. Finally, in Section 4 we 
derive exact expressions for the linear scaling fields in the full parameter 
space of the eight-vertex model. In this section we implement and fully test 
a recently proposed method (22'23) of extracting linear scaling fields from 
finite lattice data. The paper closes with a summary of our results. 

2. THE BETHE A N S A T Z  E Q U A T I O N S  FOR THE 
E I G H T - V E R T E X  M O D E L  

2.1. Parametr izat ion and Functional  Equations 

We begin by summarizing the results derived by Baxter (24'25) along 
with some caveats on the original notation. It is convenient numerically to 
work with the elliptic function 

f(z, q)= I~ (1-qm iz)(l__qmz-])(l_qm) (2.1a) 
m = l  

= ~ (__)m+l qm(m+l)/2(zm+l__z--m) (2.1b) 
m = O  
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where nome  q = e-~, e = rtI'/I, with I and I '  the complete  elliptic integrals 
of the first kind. The usual elliptic theta  functions O(z, q), H(z, q), and 
h(z, q) = O(z, q) H(z, q) that  appea r  in Baxter 's  formula t ion  are related to 
this function by 

O(z, q) = f(qz, q2), H(z, q) = iql/4z 1/2f(z, q2) (2.2a) 

2 2 6 
f ( q , q )  h(z, q) = iql/4z 1/2 - - - - ~ - -  f (z ,  q) (2.2b) 
f(q,  q') 

Some useful propert ies  of  the elliptic function (2.1) are listed in Appendix  
A. 

The connect ion between the spin and a r row formulat ions  of the model  
was discovered originally by Wu (26) and  K a d a n o f f  and Wegner(27); see also 
BaxterJ  4) The  allowed ar row configurations,  a long with one of the two 
equivalent  sets of spin configurations,  are shown in Fig. 1. Defining a set of 
spin couplings K---(K~,  K'x, K2) as in Fig. 2, we obta in  for the vertex 
weights 

a= R exp(K~ + K'~ + K2), b= R e x p ( -  K 1 -  K'l + K2) 
(2.3) 

c = R exp(Kl  -- K'I - K2), d =  R exp( - K1 + K'I - K 2 )  

where R is a normal iza t ion  factor. In terms of the elliptic function defined 
in (2.1) these weights can be writ ten as 

f ( qx  Iz, q2) f (qxz,  q2) a -  b=- 
f(q,  q2) f(qx2 ' q2) , 

xl/2f(qx-lz,  q2) f (xz ,  q2) 
c -  d =  

z,/2f(q, q 2 ) f ( x  2, q2) , 

q~/2f(x lz, q2) f(xz,  q~) 
zf(q, q2)f(qx 2, q2) 

x3/Zf( x -  lz, q2) f (qxz ' q2) 
zl/2f(q, q2) f ( x  2, q2) 

(2.4) 

+ + + -- + I +  + 

+ + + + ~ - -  -- 

+ 
) 

+ 

+I +T +I ( ( ~, ( < ) ) ( 

+ - l -  1 + + 
a b c d 

Fig. 1. The standard arrow and spin configurations of the eight-vertex model and their 
corresponding weights. An equivalent set of spin configurations has all spins reversed. 
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Fig. 2, 

I 
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I 
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Arrangement of spins (filled circles) and associated (reduced) coupling constants 
around a vertex. 

where 

z = e x p ( & U I ) ,  x = e x p ( i ~ t l / I )  (2.5) 

Since we will focus on the transition from the ferromagnetic ground 
state, we have rearranged the Baxter arrangement (28) of the weight 
parametrization. (The interchanges are a ~ c ,  b ~ d . )  As a result, the 
critical line is given by 

a = b + c + d  (2.6) 

or  

sinh 2K1 sinh 2K'1 = exp( - 4K2) (2.7) 

In the low-temperature (ferromagnetic) regime (a > b + c + d) we have 

0 < q < x 2 <  1, x < z < x  1 (2.8) 

The symmetric case K1 = K'I is given by z = 1, where c = d. The Ising limit 
K2 = 0 is given by q = x 4, where ab = cd. The parametrization (2.4) is such 
that q = 0 at T = 0 and q = 1 at criticality. 

All eigenvalues T(z )  of the row-to-row transfer matrix (24) are implicitly 
defined through the functional relation 

( _ )v'+ v" T ( z )  Q ( z )  = P ( x z )  Q ( x - 2 z )  + P ( x - l z )  Q(x2z )  (2.9a) 
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where 

p ( z ) = U  x f ( z , q !  IN N = 2 n  
kzii2f(x 2, q)J ' 

Q(z)=~ (.+v)/2 _[I1 f _  z, 

Here N is the width of the strip. 
The condition on the n zeros is 

(2.9b) 

(2.9c) 

ivI '  - vj = n + even integer 
j = l  

which can also be written as 

I~I zj=(_ ).+V"q~12 

The quantum numbers v' and v" satisfy the following rules: 

v ' = 0  (1) 

v"=0(1) 

(2.10) 

(2.11) 

if the number of down arrows in a row is even (odd) 

if the corresponding eigenvector is symmetric (antisymmetric) 

with respect to arrow reversal. 

A further quantum number  v is defined via the condition 

v + v' + n = even integer (2.12) 

implying that we can choose v = v' for n even, and for n odd, v and v' to 
differ by one. For  convenience, in all subsequent numerical computations 
we take n to be even, and thus N to be a multiple of four. 

The generalized Bethe ansatz equations provide the zeros of the 
function Q(z) .  These equations are obtained by setting z = zj, j = 1,..., n, in 
Eq. (2.9a); the left-hand side vanishes, resulting in a set of n coupled non- 
linear equations 

r S(xz,,_q)_ 1" Six ql 
= --x I I  f - 7 - ~ - x - 5 ~ - - , ,  j =  1,..., n (2.13) 

L f ( x -  lzs, q)J k =1Yt / k, q) 

The logarithmic form of the eight-vertex equations has been discussed 
by J o h n s o n  e t a l 3  29) (see also Takhtadzhan and Faddeevl3~ In our 
notation, we write the equations as 

Nq>l(~bj) = -2rc b -  2v In x + ~ ~2(~bj- ~bk), j = 1 ..... n (2.14) 
k = l  
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where zj = exp(i~bj). In (2.14) the lj are half-integers and 

~ ( ~ )  -- ~0(~, x~) 

where 

(2.15) 

(x m • m q  m • 
X sin m~ 

~0(~b, x) = - ~  - ~b - 2 
,,=~ m(1 _qm) 

(2.16) 

The function r converges absolutely for q and x in the domain (2.8). 

2.2. Solut ion on a Finite Lattice 

Solutions of (2.13) and (2.14) are not known for general values of q, x, 
and n. Our interest in this paper is in the solutions corresponding to the 
two largest eigenvalues, from which we define a suitable mass gap. For 
even n, the maximum eigenvalue To(z ) has v " =  0, while the next largest, 
Tl(z), has v" = 1. Both eigenvalues are in the sector with v' = v = 0. 

2.2.1, Bootstrapping in Temperature  

A first-order approximation valid for q ~ x 2 ~  1 has been carried out 
by Baxter. ~24) In this limit, (2.13) reduces to 

zy + ( - )v,,= 0, j =  1 ..... n (2.17) 

i.e., the zeros characterizing To(z ) and Tl(z ) are the interlacing nth roots of 
+ unity. The corresponding limit in (2.14) indicates the following choice 
for the numbers If 

T0(z): b = j  - 1 / 2 ,  j =  1 ..... n (2.18a) 

T~(z): l j = j +  1/2, j =  1,..., n (2.18b) 

The distribution of zeros in the complex z plane for each eigenvalue is 
shown in Figs. 3a and 3c for N =  32. These zeros can be used as initial 
starting points in the numerical solution for either (2.13) or (2.14). Given a 
value of x(r/), the zeros are obtained by incrementing q and solving the 
thus modified set of equations for the new distribution of zeros. This dis- 
tribution is used as input for another increment in q and so on. In this way 
we can "bootstrap" the zeros to their finite-temperature distributions. The 
zeros for To(z ) and T~(z) at q=0 .1  with q = x  3 ( r /= / / ' / 3 )  are shown in 
Figs. 3b and 3d. We observe that the sets of zeros remain interlaced. 

The most convenient set of equations to solve numerically is the real 
system (2.14). In finding the n zeros we have used a standard library 
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(a) 

, , 
(c) 

(b) 

I ~  i ! i 

(d) 

Fig. 3. Distributions of zeros on the unit circle in the complex z plane for eigenvalues To(z ) 
and T~(z) on a strip of width N =  32. (a, c) Distributions at q = 0. (b, d) Distributions at 
q=0 .1  with q=iI'/3 (q=x3) .  

package (31) implementing a Newton-type method. We have checked, for 
lattice sizes N = 4 and N =  8, the eigenvalues obtained in this way with the 
results of a "brute-force" diagonalization of the transfer matrix. In practice, 
as the zeros zj occur in complex conjugate pairs, the number of zeros and 
equations can be reduced to n/2 for To(z) and n/2-  1 for Tl(z), where we 
further factor out the stationary zeros at ~b~ = 0 and ~b,, = ~. 

2.2.2. Exact Solut ions in the Ising Limit 

As an alternative to bootstrapping from the low-temperature limit, for 
a given value of q, the incremention can be in the variable x away from the 
exact Ising solutions. When q = x 4 ( t /= ii'/4), the Bethe ansatz equations 
decouple and the solutions can be written in closed form. The simplest 
approach is via (2.14), which reduces to 

N q ~ l ( ~ b ) = - 2 ~ l j - n ( ~ + ~ b j ) +  L ~b~, j = l  ..... n (2.19) 
k = l  
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On rearranging, this can be written as 

N lj 2 ) k ~  ~ = a m =  ,To (2.20) 

where am(u, k) is the elliptic amplitude function of argument u and 
modulus k (see, e.g., Gradshteyn and Ryzhik (32)) satisfying 

u = ~ (am(u ,  k), k) (2.21a) 

with Y(0, k) the elliptic integral of the first kind: 

f~ dc~ (2.21b) 
~ (0 ,  k) = (1 - k  2 sin 2 c~) 1/2 

In (2.20), the modulus f: is defined by 

7 ' / I  = 1 I ' / I  (2.22) 

with associated nome c~=x (recall q=x4) .  From (2.20) and (2.21) we 
obtain the following solutions: 

To(z): ~ b j - ~ * - - b - 5 , ~  , j = l  ..... n (2.23a) 

T~(z): ~ b j = / ~  lj ~ , j =  1,..., n (2.23b) 

In practice, to evaluate these zeros we first compute ,~ and ]" using the 
formulas (32) 

7=~- 1+2 ~ x m (2.24) 
m ~ l  

r~= y x m~m- ~ (2.25) 
1 

2.2.3. Initial Approximation of Zeros 
For the largest eigenvalue, an init ial approximation to the zeros for 

any values of q and x, increasing in accuracy with system size, can be 
obtained by generalizing t18) the method outlined by Grieger ~t4) in the com- 
putation of the ground state of the isotropic X X Z  antiferromagnet. Here 
we appropriately sample the known ~29'3~ distribution of zeros for To(z ) to 
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provide approximations to the zeros of both leading eigenvalues. To derive 
the necessary result, we follow Hamer (13) and introduce the quantity 

1 I 1 ~ ~b2(~bi_~be) 1 (2.26) 

so that, from (2.14), at the zeros ~bj we have 

Defining 

gives (29,30) 

ZN(qSj)  = l J N  (2.27) 

dZN(4) 
R N ( ~ )  - -  - -  (2.28) 

d4 

1 ~ exp(im~b) 2@dn ~ (2.29) 
R~(~b)=~-~ m= o~ cosh m2 -- 

where dn(u, k) is a standard elliptic function. (32) In (2.29), the modulus ~ is 
defined by 

"[' /I  = ; t /g  = - i q / I  (2.30) 

with associated nome ~ = x. Using Eqs. (2.28) and (2.29), we have 

Z~(~b) = (1/2rc) am(7~b/~, ~) (2.31) 

Finally, from Eqs. (2.21), (2.27), and (2.31), 

(2.32) 

should be a good approximation to the zeros ~bj, becoming exact as 
N ~  oo. Realize, however, that (2.32) is the result (2.23a) obtained in the 
Ising case. Both of the Ising results (2.23a) and (2.23b) are thus excellent 
approximation formulas for all values of q and x. In Table I the values 
obtained from these formulas for q = x 3 = 0 . 1  and N = 3 2  are compared 
with the exact numerical results. As can be seen, the agreement is close, 
resulting in rapid convergence to the exact zeros. 

2.3. C o m p a r i s o n  w i t h  Bulk Resul ts  

For the symmetric case (z=  1), (2.9a) simplifies to give the largest 
eigenvalue in the form 

X N n X 2 Z  F f (  , q ) ]  F l f (  J,q) 
T o ( l ) = 2  f--~x2-- 11 f -~z . . - -  (2.33) 

I f (  ,q )J  j=l  f ( j , q )  



Bethe Ansatz for Eight-Vertex Model  1127 

Table I. Approximate  and Exact (Numer ica l )  Zeros ~j  Characterizing 
the Eigenvalues To(z ) and Tl(z) on a Strip of Width  N = 3 2  for 

q=il ' /3 ( q = x  3) and q = 0 . 1  

To(Z) TI(z) 

Approximate exact Approximate exact 

0.048047 0.048023 0.096562 0.096609 
0.146037 0.145959 0.197011 0.197114 
0.250106 0.249957 0.306071 0.306257 
0.365844 0.365583 0,430653 0.430980 
0.502181 0.501708 0.582855 0.583482 
0.676405 0.675428 0.789042 0.790538 
0.932371 0.929549 1.132394 1.139276 
1.471868 1.446502 

where we have exploited the fact that the zeros occur in unimodular com- 
plex conjugate pairs. However, for v " =  1, (2.9a) reduces to the identity 
"ze ro=zero . "  To obtain an expression for T1(1), we differentiate (2.9a) 
with respect to z and then set z = 1. The result is 

in which 

where 

V f(x, q) 7Nf(x 2, q) F" f(xZzJ' q) 
r'(1)=-L/-77-5, TiJ ~-777,~7 ix, q ) f i  f(zj, q) 

j = 2  

_ ~ [g(x 2zi', q) g(x2zj 1, 
F(x' q)- j=i  L ~ q ) f (x- 'z , ,  ;l ] 

N 
- -  [g(x ', q) + xg(x, q)] 
f(x, q) 

(2.34a) 

(2.34b) 

d 
g(z, q)=-~zf(Z, q) (2.35) 

and in (2.34) z~ = 1. There are no such cancellation problems in the non- 
symmetric case. 

Given To(z) and Tl(z), the free energy per site fN and the interfacial 
tension aN can be defined on a strip of width N as (g) 

1 
- flfN = ~ in To(z) (2.36) 

1 To(z) (2.37) 
- -  f l a  N = ~ In In T1 (z-----) 
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The exact results derived by Baxter, (24'28'4) valid in the thermodynamic 
limit, are 

~ (xm+x m--zm--z m)(x2m--qm)2 
- / ? f~  = In a + mxm(  1 _ q2m)(1 + x2m) (2.38) 

m = l  

1+ 
- / ?o-o~=~ln[4x  f i  ( 1 ~ _ ~ 2 }  j (2.39) 

m = l  

In Table II we show the values of (2.36) and (2.37) for z =  1, q = x  3 =0.1, 
and q=x6=0 .01  on finite strips of width N = 2  m, m = 2 ,  3,..., 8. For 
comparison we also list the bulk limits given in (2.38) and (2.39). The slow 
convergence of the interfacial tension is presumably a result of the double 
logarithm in its definition. 

It should be noted that the only real limit imposed on the evaluation 
of To(z) and T l ( z )  with increasing system size is in the resolution of zeros 
as q tends to its critical value (as can be seen from Figs. 3b and 3d, the 
nonstationary zeros will coalesce at z = 1 in this limit). For this reason, to 
examine the critical region in detail, we derive an alternative 
parametrization of the vertex weights (2.4) and the functional equation 
(2.9). 

2.4. Reformulat ion at Cri t ical i ty 

The limit q ~ 1 can be handled by using the conjugate nome identities 
outlined in Appendix B. In terms of the conjugate variables 

= exp(iw), Z = exp(i#), p = exp( - 2rc2/~) (2.40) 

Table  II. Finite Lat t ice  Est imates  (2.36) and (2.37) of the Eight-Vertex 
M o d e l  F ree -Energy  per Site and Interfacial  Tension a 

q = x  3 =0.1 q =x6  =0.01 

N - ~ f ~ )  - f i f~}  -flaN -13f~ ) -t3f~ ~ --~~ 

4 0.335068 0.274637 0.3550 0.111023 -0.005419 0.1910 
8 0.311680 0.295782 0.2578 0.088066 0.059143 0.1830 

16 0.305641 0.301653 0.1720 0.082064 0.075222 0.1383 
32 0.304114 0.303143 0.1085 0.080553 0.079016 0.0941 
64 0.303732 0.303507 0.0663 0.080181 0.079862 0.0608 

128 0.303638 0.303592 0.0401 0.080092 0.080035 0.0385 
256 0.303616 0.303609 0.0248 0.080073 0.080066 0.0245 
oo 0.303612... 0.0064... 0.080069... 0.0064... 

Also shown is the quantity - f l f~ )=  N l ln Tl(z ). 
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with w = -i2nv/l '  and/~ = -i2rul/I' the vertex weights (2.4) can be written 
a s  

1)l/2f(--(X~) 1/2, p) f ( - ( Z - ~ { )  ~/2, p) 
U(-Z,  p ) f ( - 1 ,  p) 

~' 1/2 
b = p ( z ~  l),/zf((zg) , P ) f ( ( z  1()1/2, p) 

f ( - z ,  p ) f ( - 1 ,  p) 

1)t/zf((z~) 1/2, P) f (  -- (Z - 1~)1/2, p) 
P(Z~ C 

f (z ,  P) f (  - 1, p) 

d = -P(Z~ - 1)1/2f( - (Z~)1/2, p) f ( ( z -  1()1/2, p) 
f(g, p) f ( -  1, p) 

(2.41a) 

(2.41b) 

(2.41c) 

(2.41d) 

The normalization factor p is given by 

p = exp [(~/2H')(q 2 - v2)] (2.42) 

In the ferromagnetic regime, the new variables (2.40) satisfy 

Izl = l z l = l ,  O < p < l ,  [w] < p < l r  (2.43) 

and the square root is taken so that 

-n/2 < arg(~ 1/2) ~< n/2 (2.44) 

The functional equation (2.9) transforms to 

(-- Y' + V"T(~) Q(~) = P(Z~) Q(Z-2~) + P ( z - I ( )  Q(Z2~) (2.45a) 

with 

p(~)=[p Z f(~, P2) ]N 

j ~ l  

Finally, the condition on the zeros (2.10) reads 

(2.45b) 

(2.45c) 

~I  g~ = ( -- )v pv '+n+ev  ( 2 . 4 6 )  

/ = 1  

The symmetric case (KI = K'1) is now given by w = 0 and the Ising 
limit ( r /=iI ' /4)  by # = ~ / 2 .  Duality is given by the simple interchange 
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p ~ - p ,  criticality occurring at p = 0. From (2.45a) the zeros specifying a 
given eigenvalue are now solutions of 

[ f(z~j, p2) iN .-2~" r~ f(z2~J~k 1 p2) 

k = 1Y(X j~k P ) 
j = 1,..., n (2.47) 

where, for n even, we have chosen ev = - n .  For the symmetric case, the 
analogous relations to (2.33) and (2.34) are 

[ f (z ,  p2) iN r~ f(x2~/, p2) 
To(1 )=2[Pf - -~ ,7~- ) J  1_1 ~ ) - ~  (2.48) 

.f(~, /02) -IN 2 2 n 2 2 f ( z  , P ) v[  f ( z  ~j, P ) Tl(1)=-Lpf-~,7) j xF(x, p 2 ) - ~ .  _-~ - , , - - - ~ ,  (2.49) 
g( , P ) j - 2  f(~J, P ) 

in which F(X, p2) is as defined in (2.34b), only now with zj, x, and q 
replaced by {j, X, and p2. Here the zeros zl = 1 and z2 = - 1  map to the 
values ~1 = 1 and ~2 = P. 

In deriving a logarithmic form of Eqs. (2.47), it is convenient to con- 
sider separately the zeros for To(~ ) and TI( O. 

2.4.1. Zeros for To(~ ) 
On setting ~j = e x p ( -  2c~j) and using the definition (2.1), we can write, 

for example, 

f(z~j, p2) s inh(e / -  il~/2 ) ~-r 1 + p4m __ p2m cosh(2c~j- i#) 
f()~ - l~j ,  p2) = e~ sinh(c~/+ i1~/2) mll= 1 1 + p4m __ pZm cosh(2c~/+ i#) 

(2.50) 

Subsequently on taking logarithms in (2.47) we introduce the quantities ~0 
and q~ defined by 

sinh (~ - i#/2) 
exp(i~o) - (2.51) 

sinh(c~ + i~/2) 

1 + p2 q_ 2p cosh(2c~ - i2#) (2.52) 
exp(iqs) = 1 + p2 _ 2p cosh(2c~ + i2#) 

with 

q0(c~,/z) = 2 t an -  1(cot/~ tanh cr 

qs(c~, #, p) = 2 tan_~ ( 2psinh2c~sin2# ) 
1 + p2 _ 2p cosh 2:~ cos 2# 

(2.53) 

(2.54) 
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For To(if) the Bethe ansatz equations can then be written in the form 

N~(c(j,#/2)=2~z/j+ ~, ~ ( ~ j - ~ , # ) ,  j = l  ..... n (2.55) 
k = l  

where 

~r #) = qg(~, ],t) q- 2 (jb(~, ~, p2m) 
m = l  

and the I~ are half-integers given by 

I j = ( 2 j - n - 1 ) / 2 ,  j=l , . . . ,n  

(2.56) 

(2.57) 

2.4.2. Zeros for Tl(i~) 
The zero ~ = p  trivially satisfies the first of the equations (2.47). On 

relabeling, the remaining n -  1 zeros satisfy 

[ f(z~j, D 2) . ]N 2 f(PZ2tJ ' p2) 
f (z  ~j, p2)j = - Z  f ~ ; 7 )  

"~I' f (g2~Ji;"  p21 x j = l  ..... n - 1  (2.58) =1/(z- ~;j~; ~, p2), 

and subsequently, on taking logarithms, 

NSu(~j, p/2)=2~z/s.+ ~ (b(~j, #, pem-1) 
m = l  

tt--i 
+ ~ 5u(~j-~k,#), j = l , . . . , n - 1  

k ~ l  

with integers/j given by 

(2.59) 

I j = j - - n + 2 ,  j =  1,..., n -  1 (2.60) 

2.4.3. Approximation of Zeros 
Rather than repeating the working in Section 2.2 and inverting 

appropriate elliptic functions, the shortest path to the desired formula is 
the direct transformation of the final result (2.32). Using the identity 

7 2~7' 
I /~ I '  (2.61) 
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we can use (2.32) to write 

= # Y ( 2 - ~ l j , ( l - k ' 2 ) l / 2 )  (2.62) 
c~j 27' 

with home gl'=p ~/~. The zeros (2.62) now provide excellent initial 
approximations to the zeros of the systems (2.55) and (2.59). 

2.5. Bethe Ansatz Equations and Eigenvalues at Criticality 

At p = 0 ,  Eqs. (2.55), with the choice of the numbers Ij in (2.57), 
reduce to the Bethe ansatz equations describing the leading eigenvalue of 
either the six-vertex model or the J(XZ chain. (1"4) Correspondingly, 
Eqs. (2.59) with (2.60) describe the leading eigenvalue in the next largest 
sector of either model. Defining 

c 9 = t anh- l ( t an  �89 tan �89 (2.63) 

we can write the equations for To({) and TI(~) as 

NOj = 2rclj- ~ O(Oj, Ok), j = 1,..., r (2.64) 
k = l  

where 

O(0, 0 ' )=  2 tan ' [  Asin�89 J (2.65) 
cos + ? - 5 ; 5  0') 

in which we make the identification A = - c o s  #. In (2.64), r = n for To(~) 
and r = n -  1 for TI(~ ). 

Finally, for p = 0, (2.62) can be evaluated explicitly to give 

. (/, c 9 = - In tan rc ~z .N+ (2.66) 

This last approximation formula was used by Alcaraz et al. (18) in their dis- 
cussion of the numerical solution of the XXZ Bethe ansatz equations. In 
this limit the expressions for the two largest eigenvalues, (2.48) and (2.49), 
reduce to 

p qN n/2 cosh 2c 9 -c os  2# 
T0(1) = 2 2 co~#/2)J  j=[I 1 cosh 2c 9 -  1 (2.67) 

[- p IN n/f_~, cosh 2e s - cos 2# (2.68) 
T'(1)=2EL2c~ s=* cosh 2c~j- 1 
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~ To (~) 

0 1 
Fig. 4. Critical distributions of zeros on the real axis in the complex ~ plane for eigenvalues 
T0(~ ) and TI(~') on a strip of width N =  32 with q = iI'/3 (,u = 2~/3). Each zero on the open 
interval (0, 1) has a reciprocal on (1, or). 

where 

E = 2N cos 2 kt _ cos # - 
2 

n/2- 1 2 sin # sin 2# (2.69) 

cosh 2~j - cos 2# j = l  

Here we have written the eigenvalues in terms of the zeros on (0, Go), 
which we can solve for separately (18) (see also Appendix D). 

In Fig. 4 we show the zeros ~j characterizing the eigenvalues To(~) and 
TI(~) at criticality. In the limit p = 1 all of the zeros are at the point ~ = 1. 
As p decreases, apart  from the stationary zero at ~ = 1, the zeros all move 
smoothly to the left until at criticality they occupy the positions shown in 
the figure. 

3. FINITE-SIZE SCALING 

The numerical solution of the eight-vertex-model Bethe-ansatz 
equations described in the preceding section allows the mass gap 

~N = ln( T o / T  1 ) (3. l ) 

to be easily evaluated for strips us to N ~  256 for general couplings and up 
to N ~ 5 1 2  at criticality. These values of N far exceed the lattice sizes 
(N ~ 16) available in previous lattice studies of the eight-vertex model.(2~22~ 
As mentioned in the Introduction, this allows a nontrivial test of finite-size 
scaling and a detailed investigation of convergence rates. (33,7) We begin by 
considering the free energy and mass gap at criticality, for which the 
expected behavior is predicted by conformal invariance. (34) 

3.1. Free Energy at Criticality 

For  a finite strip with periodic boundary conditions, conformal 
invariance predicts (35'36~ the free energy per site f f  to approach its limiting 
value f~  as 

f u  = f ~  -- ~ ~ c N - 2  + o ( N  2) (3.2) 

822/49/5-6~17 
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where c is the conformal anomaly. For  a model with a line of continuously 
varying exponents c is expected to be unity. (37) This prediction has been 
tested by B16te et aL, (35) using data from strips of up to 16 sites. Excellent 
agreement was found for - 0 . 3  < K2 ~< 0.4 (0.3 < #/rt <~ 0.7), but for K 2 o u t -  

s ide  this range the convergence deteriorated significantly. 
From (2.36) and (2.67), the free energy of the eight-vertex model on a 

finite strip is 

( ) ( p + . 1  l n 2 +  2 In (3.3) --flfN = In 2 co~/~/2) 
j = l  

Taking the thermodynamic limit, we have (1'4) 

( ; , )  -flf~=ln 2 co #/2) 

iv 
+ - oo 4/1 cosh(rce/#) 

cosh 2e - cos 2# 
In (3.4a) 

cosh 2~ - 1 

The integral appearing in this result also occurs in the exact solution 
of the F model (l) and has been tabulated by Temperley and Lieb (38~ for 
several values of cos #. In particular, at/~ = rt/3, rt/2, and 2rc/3, the exact (38) 
results are, respectively, In 2, 2/z x Catalan's constant, and 3/2 ln(4/3). As 
pointed out by Temperley and Lieb, however, the integral is awkward to 
evaluate numerically because of the logarithmic singularity at ~ = 0. In our 
case, it is more convenient to use the result (24'4) 

-/~foo = In cos(-#/2 

f 
~ {cosh [ (Tr -2k t ) t ] - cosh /~ t} (cosh  # t -  1) 

+ -co 2t sinh 7zt cosh/~t 
dt (3.4b) 

To estimate c, we define estimators 

6 
c N = -  [ f~  -YN] N 2 (3.5) 

7"6 

which, from (3.2), should tend to c = 1 as N ~  oo. In Table III  we show the 
sequence (3.5) for N = 2  m, m=2 ,3 , . . . , 9 ,  at several values of #. For all 
values of #, the estimates are clearly seen to approach the value c = 1 as N 
increases. The convergence does appear  to be slower, however, for # less 
than re/3. We note also that the convergence is nonmonotic  for # = re/6 and 
7r/12. 
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Table II1. Finite Lattice Estimates (3.5) of the Conformal Anomaly ( c =  1 ) 
of the Eight-Vertex Model As a Function of the Parameter IJ 

N p = re/12 # = ~/6 # = n/3 # = re/2 p = 2zc/3 # = 5~/6 # = l lrt/12 

4 0.957470 0.956599 0.949226 0.942761 0.961539 1.361967 2.462339 
8 0.992158 0.991221 0.985873 0.983256 0.987381 1.111180 2.260590 

16 1.000772 0,999861 0.996486 0.995589 0.996591 1.012555 1.359595 
32 1.001997 1.001164 0.999164 0.998881 0.999130 1.002391 1.030141 
64 1.001691 1.000959 0.999804 0.999719 0.999781 1.000572 1.005016 

128 1.001239 1.000616 0.999954 0.999930 0.999945 1.000142 1.001205 
256 1.000886 1.000367 0.999990 0.999982 0.999986 1.000035 1.000299 
512 1.000638 1,000213 0.999998 0.999996 0.999997 1.000009 1.000075 

To quant i fy  the convergence rate,  we assume 

C N = l + a N  ~, N ~ o o  (3.6) 

and  define es t imators  

l n [ ( c 2 ~ -  l)/(C2m+[- 1)]  
L , , , -  l n 2  -+2  as m ~  (3.7) 

This sequence converges  rap id ly  with increas ing rn; in Fig. 5 we show the 
e s t ima to r  L8 as a funct ion of/~ toge ther  with the value 

2 = ~4,u/(rc - ,u), 0 < ,u < re/3 
(2 ,  7t/3 < # < rc (3.8) 

which appea r s  to account  for the observed  convergence  over  the whole 
range except  at  p=zr/3. The value, (3.8), also agrees with the result  
ob ta ined  for the X X Z  chain. (17'18'1~ F o r  # = ~/3, as in the X X Z  chain,  we 

find that  the convergence can be accoun ted  for by assuming  tha t  CN ~ 1 + 
O [ ( l n  N)/N2], where the ampl i tude  is es t imated  to be a p p r o x i m a t e l y  0.83. 
The physical  significance of  these results will be discussed in Sect ion 3.5. 

3.2. Mass Gap Ampli tude at Criticality 

Turn ing  now to the mass  gap,  (3.1), we expect  tha t  at  cr i t ical i ty (34) 

N~c~v=2Z~Xp+O(1) as N ~ c c  (3.9) 

where Xp is the a n o m a l o u s  d imens ion  of  the o p e r a t o r  l inking the two states 
[0)  and  J1). Since we are  work ing  in the a r row fo rmula t ion  of  the eight- 
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11 Q 

0 
0 1}6 1~3 I 

Fig. 5. The (negated) exponent of the leading correction to the conformal anomaly estimates 
(3.6) and the polarization mass gap (3.9) as a function of ~. The estimators L s [Eq. (3.7)] are 
indicated by the dotted circles, while crosses indicate the corresponding estimate for the mass 
gap (3.9). The anomalous convergence at/z = ~z/3 can be attributed to a logarithmic correction 
(see text). 

vertex model,  this opera tor  is associated with the polarizat ion and hence 
we expect 

xp = (= - #)/2,~ (3 .10)  

This result was first established by Nightingale and B16te, (39) using 
strips of up to 16 sites. Again, poor  convergence was observed at both  
extremes of K2 (this is particularly evident in Nightingale and B16te's 
Figure lc). The result is further supported by the values in Table IV. The 
corresponding states in the X X Z  chain (i.e., states characterized by the 
same Bethe ansatz zeros), not  surprisingly, yield the same exponent. (18) The 
results of a similar analysis as described above for c to quantify the con- 
vergence in (3.9) are shown in Fig. 5, also from strips of width N =  256 and 
512. The leading correct ion to (3.9) is again propor t ional  to N -~ with Z 
given by (3.8). Again at /~=~/3,  the correction is logarithmic, of order  
(ln N) /N  2. 
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Table IV. Finite Lattice Estimates NKN/2n of the Anomalous Dimension Xp of 
the Eight-Vertex Model Polarization Operator As a Function of 

the Parameter IJ 

N # = 7r/12 # - ~z/6 # = zc/3 # = 7t/2 # = 2~/3 # = 5u/6 # = 11 ~/12 

4 0.388924 0.373731 0.317639 0.239657 0.154393 0.063194 0.019819 
8 0.414303 0.394662 0.328363 0.246999 0.163237 0.078204 0.031844 

16 0.428880 0.405138 0.331895 0.249212 0.165774 0.082220 0.039639 
32 0.437706 0.410434 0.332933 0.249800 0.166441 0.083060 0.041346 
64 0.443422 0.413217 0.333223 0.249950 0.166610 0.083265 0.041591 

128 0.447325 0.414727 0.333304 0.249987 0.166653 0.083316 0.041648 
256 0.450090 0.415567 0.333325 0.249997 0.166663 0.083329 0.041662 
512 0.452101 0.416039 0.333331 0.249999 0.166666 0.083332 0.041666 

xp 0.458333 0.416667 0.333333 0.25 0.166667 0.083333 0.041667 

3 .3 .  P h e n o m e n o l o g i c a l  Renormal iza t ion- -Locat ion  o f  T c 

Given  da t a  for K~ N from strips of two different widths,  one can locate  
the cri t ical  line by phenomeno log ica l  or  finite-size renormalization(7'4~ 

namely,  by solving the equa t ion  

N~i(f l*Jo) = N'tCN,(fl*Jo) (3.1 l )  

where Jo is a fixed d i rec t ion  in the p a r a m e t e r  space K = flJ. F r o m  the po in t  
of view of the Bethe ansatz,  the mos t  na tu ra l  imp lemen ta t i on  of (3.11) for 
the symmet r ic  e ight-ver tex mode l  involves the var iables  p and  # with w = 0. 
Thus,  we es t imate  p* (--0)  from the so lu t ion  p *  of 

NKN(p*, I~) = N'~N,(p*, #) (3.12) 

The resul t ing est imates  for several  values of N with N ' =  N - 4  are shown 
in Fig. 6 as a funct ion of# .  

The choice of  var iables  (p, /~)  is ra ther  advan tageous ,  since, as we shall  
discuss fur ther  in the next section, they co r r e spond  closely to the ac tua l  
non l inear  scal ing fields of the theory  and  hence minimize  cor rec t ion  terms 
that  would  n o r m a l l y  be expected in any realist ic finite lat t ice calculat ion.  A 
more  realist ic test is to revert  to the magne t ic  spin fo rmula t ion  and  write 
(3.12) as 

N~N(fl*JI(1, ~)) = N'~N,(fl*JI( I, ~)) (3.13) 

where ~ = K2/K1 is fixed. This  conforms with Night inga le ' s  
approach ,  (2~176 a l though  we are using a different gap. 
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Fig. 6. Finite lattice estimates p~, of the bulk critical temperature, p* = 0, with increasing N 
as a function of the variable ,u. Also shown are the corresponding values of the four-spin 
coupling constant K 2 at criticality. 

From the parametrizat ion of  the vertex weights given in (2.41) and 
their relation to the spin couplings in (2.3), the connect ion  between the two 
formulations can be written as 

f2(_(z 1~),/2, p) exp(4K1)= f2(( Z 1~)u2, p) (3.14a) 

f2(-(Z~)'/2, p) 
exp(4Ki)  = f2((Z~)l/2 ' p) (3.14b) 

f2(z,  p) 
e x p ( 4 K 2 ) -  fz(_z, p) (3.14c) 
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At criticality, these equations reduce to 

exp(2K1) = cot(#/4 - w/4) 

exp(2K]) = cot(#/4 + w/4) 

exp(2K2) = tan(#/2) 

(3.15a) 

(3.15b) 

(3.15c) 

Thus, for a given value of /s along the critical line, solving (3.13) is 
equivalent to solving (3.12) at the corresponding value of # given in 
(3.15c). The subsequent value of p* then gives the estimate/7*J~ through 
Eq. (3.14a). The resulting estimates for the critical line converge rapidly to 
the exact curve (2.7), in agreement with the earlier studies. (2~ 

3.4. Phenomenological  Renormal iza t ion- -Est imate  of v 

Let us now turn to the question of estimating the critical exponent v 
from the phenomenological renormalization group. We have (7'=) 

(dfl'~ * = rll~ = (3.16) r ( J o  ~ V~CN)* 

dfl J ( aO ~ V K  N/r ) * 

where the asterisk indicates that the expressions are to be evaluated at 
criticality and the gradients are with respect to K. Again choosing N'= 
N/r = N - 4 ,  we obtain the estimators 

ln[-(Jo" VxN)*/(3o" VI%JN_ 4)* ] 
VNI= 1 + (3.17) 

In [ N I ( N -  4)] 

To extend and clarify the previous finite lattice estimates of v, we rewrite 
(3.17) as (4~ 

ln[DI(N) /DI(N-  4)] 
v/v I = 1 + (3.18) 

l n [ N / ( N -  4)] 

with, in general, derivatives Di(m ) defined by 

D /c~cm\* i(m)=t-~-~i ) , i = 1 , 2  (3.19) 

The exact result for the thermal exponent is (24'4) 

YT = v-  1 =-4 tan_ l(ex p 2K2) =--2# (3.20) 
7t 
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One of the early achievements of phenomenological renormalization was 
Nightingale's success (2~ reproducing this result quantitatively. Now, in 
order to compare our results with those obtained in the spin formalism, it 
is necessary to write the derivatives in (3.19) in terms of the more con- 
venient variables (p, #). The necessary working is straightforward and is 
outlined in Appendix C. Using results (C3)-(C5) with w = 0 ,  we have 

1 ( ~ c , ~ *  2 cos # (c3~m)* (3.21a) 
D~(m) = 2 sin # sin(/~/2) \ @ ) + sin(/~/2-------~ \ @ ) 

1 (~Km)* {(~lgm~ * (3.21b) 
D2(m) - 4 sin2(#/2) \ ~3p ) + 2 cot (/~/2) \ ~/~ ) 

3.4.1.  Eva lua t ion  of  Cr i t ica l  Der iva t ives  

Let us briefly consider the evaluation of the derivatives appearing in 
(3.21). We begin by noting that the derivatives with respect to the variable 
# are simply derivatives along the critical line, i.e., marginal derivatives. It is 
thus convenient to evaluate these derivatives numerically using, for exam- 
ple, the two-sided, four-point formula 

h'(x) = h(x - 2Ax) - 8h(x - Ax)12Ax + 8h(x + Ax) - h(x + 2Ax) q- O(Ax)4 

(3.22) 

The derivatives with respect to the temperature-like variable p are, 
however, derivatives across the critical line (we shall refer to these as 
thermal derivatives). To use a two-sided derivative as in (3.22), we thus 
need to be able to calculate To(f) and Tl(f) above the critical temperature. 

Fortunately, in this formalism, the simple interchange p ~ - ~ - p  
represents the duality transformation between the low- and high-tem- 
perature phases of the model. Consider, first, the largest eigenvalue T0(f). 
The Bethe ansatz equations (2.47) involve elliptic functions of nome p2. As 
none of the zeros characterizing To(f) are explicitly dependent on p, the 
duality transformation leaves To(f) unchanged. We must have 

(OTo/Op)* = 0  (3.23) 

and so only the derivative of TI(~) need be considered. Recall that this 
eigenvalue has an exact zero at f~ = p. Duality dictates that T~(f) maps to 
an eigenvalue with an exact zero given by f~ = - p ,  the remaining zeros 
being invariant under the transformation. This is indeed the case; the eigen- 
value T~(f) crosses at criticality with the leading eigenvalue in the other 
sector. We observe that the zero fl = - p  in fact corresponds, in this 
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language, to a 0-string excitation/29~ Thus, in evaluating the derivative 
TI(() at criticality using (3.22), we also compute the leading 0-string eigen- 
value. This eigenvalue has associated quantum numbers v = v' = v" -- 1 and 
in terms of the original variables in Section 2.2 has an exact zero at 
z l  = _q l /2  (the zero at z I = - 1  is excited to this position). This level gives 
in fact, in the spin language, the largest eigenvalue with antiperiodic boun- 
dary conditions. 6 In Fig. 7 we show these levels schematically as a function 
of the variable p. We have observed that, in this formalism, quite literally, 
the whole spectrum can be "folded over" the vertical line through p = 0. 

Alternatively, exact expressions can be derived for the derivatives 
appearing in (3.21), although such expressions involve solving a further set 
of linear simultaneous equations for the derivatives of the zeros character- 
izing To(() and TI((). However, for large N in particular, we have chosen 
to evaluate the derivatives of the mass gap in this manner. This necessitates 
only the computation of the zeros characterizing To(() and TI(() at 

criticality. We derive these equations in Appendix D. Finally, we mention 
that we have compared our results for the derivatives in (3.21) with the 
exact "brute force" results for lattice sizes N =  4 and N =  8. We proceed 
now to our estimates of the critical exponent v. 

3.4.2. Numerical  Results 

As an illustrative example of our results, we show in Fig. 8a the finite 
lattice estimates (3.18) as a function of the four-spin coupling K2 for the 

6 Using (2.36), (3.1), (3.2), and (3.8) then gives ( 5 g / 6 - # )  N -2 as the leading correction to the 
free energy per site of the eight-vertex model with antiperiodic boundary conditions in the 
spin formulation. 

Ti 

I/T-~ i=0 ....... 

[ I -  P 
disorder order 

-1 0 1 

Fig. 7. Schematic illustration of the three leading eigenvalues of the eight-vertex model on a 
finite lattice. Eigenvalue T~(() crosses at criticality with the leading 0-string eigenvalue T2((). 
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Fig. 8. Estimates of the thermal exponent Yr of the eight-vertex model as a function of the 
four-spin coupling K 2 obtained from strips of width N = 64 and N' = 60. The solid line is the 
exact value of Yr. The arrows indicate the direction of convergence (see text). (a, b) Results 
using the mass gaps defined in (3.1) and (3.24), respectively. 

particular value N = 6 4 .  Also shown is the direction in which the finite 
lattice estimates converge to the exact result (3.20); a downward-pointing 
arrow indicates convergence from above, etc. For  the mass gap (3.1), the 
convergence is monotonic for large values of the four-spin coupling. At the 
particular point K2 = - 0 . 5 ,  however, the estimates successively decrease 
from above the critical temperature until at N =  60 they begin to converge 
uniformly from below (the exact value lies between the N = 12 and N =  16 
estimates). 

At first glance these results appear  somewhat surprising, as the 
previous results (2~ 22) for strips of width up to N =  16 showed non- 
monotonic convergence for 1s >~ 0.5. Recall, however, that we are using a 
different gap. We can readily define a further gap by 

~ )  = In(To~T2) (3.24) 

with T2 the leading eigenvalue in the sector with v = v ' =  1 (as discussed 
above). The critical derivatives of this gap are easily obtained from those of 
~; the derivative with respect to ~t is the same, but the thermal derivative 
has opposite sign (recall Fig. 7). 

The finite lattice estimates (3.18) using the gap (3.24) are shown in 
Fig. 8b, also for N = 64. Again the convergence is monotonic,  with now the 
estimates at K2 = 0.8 and K 2 = 1.0 the exceptions. As for the previous gap, 
such estimates initially approach the bulk critical line from above, but 
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"overshoot" the exact values. Here this occurs at N =  20 for K2 = 0.8 and 
N = 48 for/s = 1.0. The trend in convergence changes direction at, respec- 
tively, N =  32 and N =  72. 

The common factor in Fig. 8 is the poor  convergence for K z ~ -0.5.  In 
the next section, we will relate this to the change [-recall (3.8)] found in 
the convergence rate of estimators of c and the mass gap amplitude in 
Sections 3.1 and 3.2. (In spin language, the value /~ = ~z/3 corresponds to 
/s = -0.274 .... ) As we have seen, however, the convergence rate can also 
be "distorted" by the behavior of the derivatives in (3.21). In particular, for 
the mass gap (3.24) in which the thermal derivative is negative, the initial 
overshooting of the exact critical temperatures for large/s is reminiscent of 
the nonmonotonic behavior seen by Nightingale (2~ and BarberJ 22) 

Unfortunately, the direct extension of Nightingale's results, by using 
the same gap, is beyond the scope of this paper. The recovery of this gap 
from the arrow formulation of the eight-vertex model appears to require 
imposing antiperiodic boundary conditions on the arrows, as has recently 
been pointed out by Davies. (411 

3.5. Convergence Rates 

In Section 3.2, we found that at criticality 

NtcN = 2rCXp q- O(N - ) )  (3.25) 

where 2 is given by (3.8). On the basis of conformal invariance, Cardy (341 
has shown that the correction terms in (3.25) arise since the physical 
critical Hamiltonian differs from the conformally invariant fixed-point 
Hamiltonian by terms involving irrelevant operators. 7 

Writing 

H c = H* + ~ c~iOi (3.26) 
i 

Cardy showed that a gap, such as KN, should behave at criticality as 

xN ~ - ~  Xp + ~ c~,Cpp, + ... (3.27) 
i 

where xi ( > 2 )  is the anomalous dimension of the operator Oi and Cppe is 
the relevant (universal) operator algebra coefficient. 

7 The role of irrelevant operators in the corrections to finite-size scaling was pointed out by 
Barber 171 and discussed in detail by Pr ivman and Fisher t33) (see also Reinicke~42)). 
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A naive interpretation of our conclusion (3.25) would identify 2 + 2 
with the dimension of the dominant irrelevant operator  (the so-called 
correction-to-scaling exponent). In the X X Z  chain, this identification is, 
however, incorrect, since the spectrum contains no gaps that can be related 
to the existence of an operator with such a dimension3 ~8) While we have 
not made a similar exhaustive search of the eigenspectrum of the eight-ver- 
tex model transfer matrix, the close similarity of the two problems at 
criticality suggests that the corrections to scaling should be of the same 
origin. In the X X Z  model, these can be explained ~7a8) by assuming that 
two irrelevant operators are involved: Oi with dimensions x~ = 4 and O~ 
with dimension xii = 1 / X p = 2 r c / ( i t - g ) .  The operator O~ belongs to the 
conformal block of the identity operator  and gives rise to "analytic" correc- 
tions. On the other hand, On leads to nonanalytic corrections, but only 
couples to the relevant operators in second order, i.e., Cpp~ = 0. As a result, 

Ntr N "~ 27-CXp -t- A x N  2 + AlIN2XH-4 (3.28) 

If we accept that this assumption is also valid for the eight-vertex 
model, we are able to account, not only for the convergence of ~N and cN, 
but also for the convergence of the phenomenological renormalization 
estimators p *  and v*. To do so, we assume that ~CN(p,l~) has the 
generalized finite-size scaling form 

KN(P, # ) ~ N - 1 Q ( g r  Ny~, gin, gi N-2, gn N Y) (3.29) 

where g r ~  p ~ T - T  c is the thermal field, gm ~ K2 "~ # -  re/2 is marginal, 
and we have set y = x i ~ -  2 = 2/~/(rc- #). To recover (3.28), we require 

Q(o, g, u, v) = 2rCXp -t- A i (g )u  + Al i (g)v  2 + . . .  (3.30) 

as u, v ~ 0. Prediction of the asymptotic behavior of p *  and v* requires 
also the behavior of Q(x,...) for small x. Since this limit involves a relevant 
variable, it appears, at first sight, that conformal invariance can no longer 
be used to determine the leading behavior. However, (3.27) remains, in 
fact, valid for relevant perturbations. 8 

8 This has also been realized recently by Reinicke, (43t who showed that it was possible, given 
the knowledge of certain correlation functions, to compute explicitly the coefficients of the 
scaling function at small argument. It would be interesting to extend Reinicke's calculations 
to the eight-vertex model. 
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Hence, we find that 

Q(x, g, u, v)= 2Ztxp + Ao(g) x[1 + bi(g)u + bx~(g) v2 + . . .]  

+ A, (g)u+ An(g)  v 2 + ...  (3.31) 

as x, u, v ~ 0, where the absence of a term of order xv is due to the same 
selection rule that prevented a term of order v in (3.30). 

With this result, it is straightforward to extend the analysis of Privman 
and Fisher ~33) (see also Barber ~22)) to show that 

p * ~ D N  YT -~, N ~  (3.32) 

while 

VNl*~v-l+O'N -yv,  N ~  (3.33) 

The occurrence of logarithmic factors at # = 7r/3 can also be understood. At 
this value, y~ = 2 -  x I and YI~-- -2-xH satisfy a linear relation, namely 
y~ = 2yu, which results in additional logarithmic factors .  (44) 

We now turn to the numerical confirmation of the results (3.32) and 
(3.33). From (3.32), we assume 

p * ~ D N  -~~ N ~  v~ (3.34) 

and define estimators 

In(p* 4/P~) 
�9 co as N ~  (3.35) 

c o N - l n E N / ( N - 4 )  ] 

Figure 9 shows this sequence for N =  16, 32, and 64. Also shown is the 
value co = Y r +  Z, with the exponent 2 defined in (3.8). Unfortunately, the 
sequence (3.35) cannot in general be calculated for larger N, as p*  rapidly 
approaches the numerical precision of our solutions. Nevertheless, the 
results shown clearly point to the validity of (3.32). 

To test (3.33), we set y = v  -1, assume 

y * ~  y + D'N -~ N ~ ~ (3.36) 

and define the estimators 

ln(Ay*,~/Ay*~+ ~) 
0 m -  ~0 as N ~  (3.37) 

in 2 

where Ay } = y * -  y. Figure 10 shows this sequence as a function of K 2 for 
the particular values m = 4, 6, and 8. For  K 2 > 0 and K2 < 0 we have used, 
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Fig. 9. Estimates o)~ [Eq. (3.35)] of the leading correction to the finite lattice estimates of 
the critical temperature as a function of #. The solid line is the exact value YT+ 2. 

respectively, the mass gaps (3.1) and (3.24). The estimators in (3.37) are 
amenable to extrapolation/7) and in all cases we find excellent agreement 
with the predictions in (3.33). 

The result (3.33) can be reproduced exactly in the Ising limit. Using 
the results of Appendix D, we find that the derivatives of the mass gaps 
(3.1) and (3.24) assume the simple form 

8K,/ \eK2/ - 2  1 + (3.38) 

-8K-7/ = 2 x/2' = 2  \-YkT/ 

Thus, for both gaps, the estimators (3.18) yield the exact thermal exponent 
for all N. However, the corresponding estimators with K2 derivatives are 
seen to converge as N ~, in agreement with (3.33). 
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Fig. 10. Estimates 0,,, (3.37), of the leading correction to the finite lattice estimates of the 
thermal exponent as a function of the four-spin coupling K2. The solid line is the exact value 
ofy-r given by (3.23). 

3.6. Sca l ing  Funct ion  

Finally, it is of  interest to compute  numerically the scaling function for 
~c. Neglecting corrections due to the irrelevant fields, (3.29) implies that 

~CN(p, #) ~ N ~Q(pN1/V; #) (3.40) 

as N---, oo and p ~ 0 with p N  1/~ of order unity. Hence, for fixed #, a plot of 
N~c N versus p N  1Iv should reduce to a single curve. In Fig. 11 we show such 
a plot for the particular values # = ~/3 and # = 2n/3. We show only  the 
curve obtained from a strip of  width N =  128; the error is expected to be no 
greater than the width of each line. 
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Scaling function Q(pN~/~; ~) for the eight-vertex model mass gap ~c at the particular 
values/t = ~/3 and # = 2~/3. 

Two asympto t i c  regimes of the scal ing funct ion (3.40) are known.  
F r o m  (3.30) we observe that  

Q ( x ;  t.t) = r~ - I-t + O ( x ) ,  x ~ 0 (3.41) 

while to recover  the bu lk  behav io r  we require,  as usual  in finite-size scaling, 
tha t  

Q ( x ; l ~ ) = Q ~ x  - v ,  x--+ c~ (3.42) 

F igure  11 clearly demons t ra t e s  the crossover  between these two asympto t i c  
regimes. 
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4. LINEAR SCALING FIELDS 

It is very apparent from the discussion in Section 3.5 that criticality in 
the eight-vertex model involves several scaling fields. On the other hand, 
conventional phenomenological renormalization, unlike a microscopic 
renormalization group, gives no direct information on the scaling field 
structure of a model. Two methods of estimating linear scaling fields and 
their critical exponents from finite-lattice data have been recently proposed 
by Barber. (22'23) To formulate these methods, recall (45'46) that for a system 
described by a set K of coupling constants the critical exponents and 
related linear scaling fields are associated with the fixed points K* of some 
microscopic renormalization of the couplings 

K --* K' = ~ r ( K )  (4.1)  

in which r (>  1) is the spatial rescaling factor in the transformation. By 
linearizing (4.1) around a particular fixed point, we obtain the exponents 
from the eigenvalues A s = r y~, y~ = 2 - x ~ ,  of the matrix 

V,,j \~K,J  (4.2) 

where the derivative is evaluated at K = K*. The associated linear scaling 
fields are given by 

u~ = f ~ - ( K -  K*) (4.3) 

where f~ is the left eigenvector of T with eigenvalue A~. 

4.1. Linear Scaling Fields for  the E ight -Ver tex  M o d e l - - E x a c t  
Results 

Exact expressions for the linear scaling fields of the eight-vertex model 
in the spin formulation (4.3) can be extracted from (3.14a)-(3.14c) by con- 
sidering the quantities 

Up ~ (Vp)* �9 (K - K*) (4.4a) 

u, ~ (V#)* �9 (K - K*) (4.4b) 

uw ~ (Vw)* �9 (K - K*) (4.4c) 

where the derivatives are with respect to K and are evaluated at criticality. 
As remarked previously, the variables (p, #, w) correspond closely to the 
actual nonlinear scaling fields of the theory [see, e.g., the expression for the 

822/49/5-6-18 
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bulk free energy in Eq. (10.12.12) of Ref. 4] .  The  derivatives in (4.4) are 
given in Appendix  C. Normal iz ing  the fields so that  

Ul=(K~-K*)+a(1, I')(K'z--K'~*)+a(1,2)(K2-K*) (4.5a) 

u'~=(K'~-K'l*)+a(l', 1)(K~-SK*)+a(I',Z)(K2-K *) (4.5b) 

u2=(K2-K*)+a(2 , I)(K1-K~)+a(2 , 1')(K'1 - K'I* ) (4.5c) 

we obtain  

sin(#/2 + w/2) sin # 
a( 1, 1') = sin(#/2 - w/2)' a( l, 2) = sin(p/2 - w/2) (4.6a) 

a ( l ' ,  1 ) =  - 
sin(#/2-w/2) 
sin(#/2+w/2) 

a ( l ' ,  2 ) =  
sin 2# sin w 

sin(#/2 + w/2)[-sin 2# - 2 sin(# - w)]  

(4.6a) 

cos # sin(#/2-w/2) cos # s i n ( p / 2 +  w/2) 
, a(2, 1 ' ) =  (4.6c) 

a(2, 1) = sin # cos w sin # cos w 

These results simplify considerably in two special limits. 

4.1.1. Anisotropic Ising Limit p = n / 2  

In this limit the variable w varies the s trength of the anisotropic  
nearest  ne ighbor  couplings on the two independent  sublattices. The linear 
scaling fields (4.5a)-(4.5c) reduce to 

cos w/2 + sin w/2 
u~ = (K1 - K*)  q (K'I - K't*) (4.7a) 

cos w/2 - sin w/2 

cos w/2- sin w/2 
u'l = (K'~ - K'~*) (K1 - K*)  (4.7b) 

cos w/2 + sin w/2 

u2 = 0  (4.7c) 

Recalling (3.15a) and (3.15b), we can write the ampli tudes  as al = sinh 2K1 
and a'l = -1/al, agreeing with the results derived by Barber.  (=) The 
corresponding exponents  are Yl = 1 and y'~ = 0. 

4.1.2. Isotropic E ight -Ver tex  Limit w = 0  
Here  the variable # alters the s trength of the spin coupling constants  

through (3.15a) and (3.15c). The linear scaling fields are 
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b/1 = 2 ( K  1 - -  K ~ )  -1- 2 cos([t/2)(K2 - K * )  

u'l = 0  

cos # 
112 = (K2 - K~') -t - -  (K1 - K*) cos(~/2) 

Renormalizing as in Barber, ~22~ we define amplitudes al 

(4.8a) 

(4.8b) 

(4.8c) 

= cos(#/2) and 
a 2 = cos/2/c0s(/~/2), which in terms of the four-spin coupling constant K2 
can be written as 

al = 1/(1 + e4X2) 1/2, a2 = (1 -e4X2)/(1 + e4'V2) 1/2 (4.9) 

The amplitude a 1 of the thermal field agrees with Barber's result, 9 while the 
amplitude a2 of the subdominant (marginal) field was previously unknown. 
In this case Yl = Yr with Yr given in (3.20) and, as for the anisotropic Ising 
model, I = / y :  = 0. 

4.2. Numerical  Results 

Here we implement and fully test Barber's method A. (22) Using finite- 
lattice data, this method explicitly constructs the transformation matrix 
defined in (4.2), from which the scaling fields and exponents readily follow. 
Specifically, in the isotropic limit, we define 2 • 2 matrices L and M by 

Li.j  = Dj(li), Mi, j = Dj(m~) (4.10) 

The matrix T can then be written as (22'23) 

T = r M - 1 L  (4.1l) 

where the two pairs of strips (ll, ml) and (/2, m2) are such that l~=rm~. 
The linear scaling fields defined in (4.3) can then be found from the right 
eigenvectors of T, 

ei = (cos 0i, sin 0i), i =  1, 2 (4.12) 

with the result that a 1 = - c o t  02 and a 2 = - t a n  01. As indicated above, the 
related exponents follow from the eigenvalues through A i = r y', i = 1, 2. 

In Table V we show sequences of finite lattice estimates obtained from 
the mass gaps (3.1) and (3.24) at /s 0.5, 0.8, and 1.0. [Here quan- 
tities obtained from (3.1) and (3.24) are denoted by, respectively, (1) 
and (2).] For  convenience we have used triplets of lattice sizes. For  a given 

9 A minus  sign is miss ing  from the result  quo ted  in Ref. 22. 
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Table  V. P h e n o m e n o l o g i c a l  R e n o r m a l i z a t i o n  Est imates  of  the  Exponents  
Yl = YT and Y2 --- Ym and Linear Scal ing Field A m p l i t u d e s  a 1 = a T and a2 = am 

o f  the  E i g h t - V e r t e x  M o d e l  

r Lattices Yl a~ 1) a~ 2) Y2 a(21) a(2 2) 

K4 =0.2 
2 (4, 8, 16) 1.242628 0.588362 0.555239 -0.055390 -1.088 -0.377 

(8, 16, 32) 1.246684 0.556942 0.556656 -0.011898 -0 .914 -0.487 
(16, 32, 64) 1.247755 0.556814 0.556785 -0.002875 -0.816 -0.562 
(32, 64, 128) 1.248026 0.556801 0.556798 -0.000713 -0 .760 -0.609 
(64, 128, 256) 1.248094 0.556799 0.556799 -0.000178 -0.728 0.638 
(128, 256, 512) 1.248111 0.556799 0.556799 0.000044 -0.709 -0.656 

4/3 (288, 384, 512) 1.248115 0.556799 0.556799 -0.000016 -0.701 -0.664 
8/7 (392, 488, 512) 1.248115 0.556799 0.556799 -0.000016 -0.698 0.667 

Exact 1.248117 0.556799 0 -0 .682 

K4=0.5 
2 (4, 8, 16) 1.534152 0.347120 0.343404 -0.176223 -10.83 -0.237 

(8, 16, 32) 1.547583 0.345415 0.345101 --0.037280 -5.703 -0.731 
(16, 32, 64) 1.550483 0.345263 0.345252 -0.004215 -4.044 - 1.138 
(32, 64, 128) 1.551003 0.345258 0.345257 0.000904 -3.405 - 1.390 
(64, 128, 256) 1.551126 0.345258 0.345258 -0.000218 - 3.028 - 1.584 
(128, 256, 512) 1.551156 0.345258 0.345258 -0.000054 -2.783 - 1.735 

4/3 (288, 384, 512) 1.551162 0.345258 0.345258 -0.000019 -2.652 -1.826 
8/7 (392, 488, 512) 1.551163 0.345258 0.345258 -0.000014 -2.616 -1.853 

Exact 1.551166 0.345258 0 - 2.206 

K4 =0.8 
2 (4, 8, 16) 1.744949 0.195969 0.199856 0.139950 23.77 1.198 

(8, 16, 32) 1.730084 0.198175 0.197632 -0.182414 17.92 1.528 
(16, 32, 64) 1.744552 0.197917 0.197890 -0.025515 -83.54 -0.084 
(32, 64, 128) 1.746145 0.197903 0.197903 -0.001312 - 17.49 - 1.135 
(64, 128, 256) 1.746302 0.197903 0.197903 -0.000241 - 13.02 - 1.586 
(128, 256, 512) 1.746336 0.197903 0.197903 -0.000056 - 10.75 - 1.956 

4/3 (288, 384, 512) 1.746342 0.197903 0.197903 -0.000020 9.587 -2.211 
8/7 (392, 488, 512) 1.746344 0.197903 0.197903 -0.000014 -9.271 --2.291 

Exact 1.746347 0.197903 0 - 4.657 

K4 =1.0 
2 (4, 8, 16) 1.944347 0.130026 0.138325 0.579105 27.96 2.061 

(8, 16, 32) 1.806340 0.134140 0.134085 -0.114101 12.80 4.368 
(16, 32, 64) 1.820475 0.134146 0.134080 -0.119200 15.18 3.699 
(32, 64, 128) 1.828338 0.134113 0.134112 0.005446 129.6 0.548 
(64, 128, 256) 1.828677 0.134113 0.134112 -0.000305 -88.90 -0.468 
(128,256, 512) 1.828715 0.134113 0.134112 -0.000060 -48.51 -0.968 

4/3 (288, 384, 512) 1.828722 0.134113 0.134112 -0.000020 -37.14 -1.304 
8/7 (392,488,512) 1.828723 0.134113 0.134112 -0.000014 -34.55 - 1.412 

Exact 1.828726 0.134113 0 - 7.188 
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triplet, a different matrix T is constructed from each gap, yet both matrices 
are seen to have common eigenvalues and thus produce the same exponent 
estimates. 

As was borne out in the earlier results, (22) the agreement of the ther- 
mal field and its exponent with the exact values is excellent for all Ks. 
Further, we observe that for Ks >~ 0.5 the initial estimates in the sequence 
for Yl are nonmonotonic. As we saw in Section 3, however, the sequences 
settle down into monotonic behavior as they enter into the asymptotic 
regime. For the triplet of largest lattice sizes the exponent estimates are of 
similar accuracy for all of the K2 values shown. In agreement with the 
earlier results, the estimates of the amplitude of the subdominant 
(marginal) scaling field and its exponent are poor for the lattice sizes 
normally available to direct diagonalization. Unfortunately, the amplitude 
of the marginal field is still poorly determined for large values of Ks, even 
for the largest lattice sizes. 

Finally, we consider a general triplet of lattice sizes (N, rN, r2N) in the 
Ising limit. Using the exact results (3.38) and (3.39) to construct the 
matrices defined in (4.10), we find both gaps give 

independent of N. Thus, in the isotropic Ising limit, we construct the exact 
transformation matrix, from which we obtain the exact exponents and 
scaling field amplitudes: Yl = 1, Y2 = 0, a I = 1/.,,/2, and a2 = 0. 

5. S U M M A R Y  A N D  C O N C L U S I O N  

In this paper we have reformulated and numerically solved the Bethe 
ansatz equations for the eight-vertex model on a finite lattice. An 
approximation scheme, increasing in accuracy with system size, has been 
used to provide accurate starting points in the numerical solution of the 
finite system of equations. By using this method, we obtained the three 
largest eigenvalues, and subsequently two mass gaps, on infinitely long 
strips of width up to 512 sites. 

Our discussion in Section 3 of the convergence of finite lattice 
estimates with increasing system size has helped to clarify the anomalous 
behavior seen in earlier studies. We find that the free energy per site 
approaches its bulk limit as 

f N = f  _~rN-2+O(N z-i.) (5.1) 
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while the mass gap (3.1) behaves as 

N~r N = 2UXp + O(N -~) (5.2) 

with Xp the scaling dimension (3.10) of the polarization operator. 
The correction exponent 2 is 

2 = min(2, 4/~/(u - 1~)) (5.3) 

This behavior is the same as found in the XXZ chain. 117'18"1~ Finite 
lattice estimates of the critical temperature (p  = 0)  converge as 

p*= O(N -yr ~') (5.4) 

here y r =  1/v is the thermal exponent (3.20). On the other hand, estimates 
of the exponent v obtained from phenomenological renormalization 
converge as 

v* = v + O(N --~'r) (5.5) 

The corrections in (5.1), (5.2), (5.4), and (5.5) account for the 
deterioration in convergence seen/2~ 22.35.39) when the four-spin coupling K 2 
is in the range K2 < -0.3. On the other hand, for large positive values of 
the four-spin coupling, the above results predict that the convergence 
should be more rapid than for small values of K2. The poor convergence 
seen for the lattice sizes (N,-~16) normally available to direct 
diagonalization can be attributed to relatively large amplitudes in the 
correction terms, and also for the estimates of v, to the behavior of the 
derivatives, particularly sign changes, that appear in the finite lattice 
estimators. 

In Section 4 we have derived exact expressions for the amplitudes of 
the linear scaling fields and compared the results with a recently proposed 
method (22'23) of estimating linear scaling fields from finite lattice data. This 
involved the explicit (phenomenological) construction of the transfor- 
mation matrix (4.2) appearing in the renormalization group formalism. 
Apart from the large K2 estimates of the subdominant (marginal) scaling 
field, which becomes large in magnitude, the results obtained were in 
excellent agreement with the exact values. 

Our calculations can be extended in several directions. The observed 
slow convergence for the interfacial tension defined by (2.37) should be 
obviated by using a definition incorporating a sum over the relevant band 
of eigenvalues. Also, we mention that the calculations presented in this 
paper can be repeated in the full parameter space of the model. This would 
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allow a further test of the methods proposed for extracting linear scaling 
fields and an investigation of the effect of anisotropy on finite-size scaling 
and its corrections in the eight-vertex model. 

A P P E N D I X  A 

Three useful identities involving the elliptic function f(z, q) defined in 
(2.1) are 

f(z -~, q)= -z-~f(z, q) (A1) 

f(qz ~, q2)=f(qz, q2) (A2) 

f(z, q) f(z, -q)  f(z 2, q2) 
- - -  (A3) 

f(w, q) f(w, -q)  f(w 2, q2) 

A P P E N D I X  B. C O N J U G A T E  M O D U L U S  T R A N S F O R M A T I O N S  

To find a conjugate modulus identify for the elliptic functionf(z, q) we 
need the standard (apart from an irrelevant factor) elliptic theta 
function (4~32) 

_ _ - -  l i e  i u f f e 2 i u  O(u,q)=sinu (1 2qmcos2u+qZm)(1 qm)-- 2 j ,  ,q) (B1) 
/l"t = 1 

This function is also related to f(z, q) by the conjugate modulus identify 14~ 

1(-~) 1/2 [8rc22u(~-+u)lf(e4~U/~,e-4~2/e ) (B2) O(u, e ~)= - ~  exp 2e 

Comparison of (B1) and (B2) results in 

f(e 2i~,e-~)=i - -  exp iu-~ 8 2e 2u(~+ u) l f(e4~,/~, e-4~2/~ ) (B3) 

Since the parametrization of the weights (2.4) and the functional relations 
(2.9) involve only ratios of elliptic functions, we may use (B3) to define 
transformation rules: 

f(e,~U/l, q2)~exp k ~  21' 4H'J f(e~U/" p) (B4) 

f(e'~U/" q)~exP \ 2I I' 2--~] f(e2~'/r' p2) (B5) 
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A P P E N D I X  C 

In this appendix we give the details in the derivation of the derivatives 
of the variables (p, #, w) with respect to the spin coupling constants K = 
(K~, K'~, K2). The connection between the sets of variables is given in Eqs. 
(3.14a) (3.14c). Recalling the definition (2.1) of the elliptic function f(z, q), 
we have, to first order in p, 

exp(2K1 ) = cot(#/4 - w/4)[ 1 + 4p cos(#/2 - w/2)] 

exp(2K'l ) = cot(#/4 + w/4)[ 1 + 4p cos(#/2 + w/2)] (C1) 

exp(2K2) = tan(p/2)( 1 - 4p cos #) 

By differentiating these equations, first with respect to K 1, we obtain 

~-k-~l] = 4 sin # cos # \~-~1] 

O=sin(#+w)(@~* 1 [ ( @ ~ *  /~w~*] 

sin 7 - 7  = s i n ( # - w )  ~ 1  -4L\~-K-T] -\~K-T)J 

Now (C2) simply represents a system of three equations in three 
unknowns, from which we can readily solve for the derivatives: 

(@) * sin(#/2 - w/Z) 
(C3a) 

0KI)  2 sin #(cos w - cos #) 

@ "~* 2 cos # s in( i f /2-  w/2) 
(C3b) ?-k-T) " - c o s  w - c o s  # 

(#w~ * 2sin(#/2-w/2)[sin(#+w) 1 
QKI) - c o s w - c o s #  k s~-nn~ - c o s #  (C3c) 

In a similar manner we obtain the remaining derivatives, 

(@ ']* sin(#/2 + w/Z) 
(C4a) OK'1/ 2 sin #(cos w - cos #) 

l 

( ~# ~* 2cos#sin(#/2+w/2) (C4b) 
7 - ~ , )  = c o s  w - c o s  # 

~ / q  ) = cos  w -  o--o-~ ~ cos  # -~n 
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and 

2(cos w - cos #) 

( 0 # ~ *  = 2 c ~  (C5b) 
\•K2] cos w - cos/~ 

( c3~22)* = 2 sin w cos # (C5c) 
COS W - -  COS ,U 

A P P E N D I X  D. D E R I V A T I V E S  OF THE M A S S  GAP 

In this appendix we derive expressions for the derivative of the mass 
gap (3.1) with respect to the variables p and #. These expressions are to be 
evaluated at criticality. We consider first the derivative with respective to p. 

D1. Thermal  Der iva t ive  

Using (3.23), we have 

(~K) r __(1 (~TI~* 
V = \ E T /  (rot 

It suffices to consider the eigenvalue equation (2.49) in the form 

Tl(1 ) ~' , f ( P z  2) ~]-[2f(z2(j) (D2) 

as the neglected prefactors can be seen to make no contribution to the 
derivative in the limit p = 0. In (D2), for ease of notation, we have dropped 
the explicit functional dependence on h o m e  p2. 

The logarithmic derivative of (D2), and subsequently Eq. (D1), can be 
written as a sum of three terms, A, B, and C, with 

l c~f(pz 2) 1 Of(p) 
A=f(p)~ 2) Op f(p) @ (D3a) 

1 ~F(x) 
B = (D3b) 

F(Z) cgp 

j=l/'m' k f ( ~ ( : )  @ f(~j) ~P J 
(D3c) 
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Given the definitions (2.1), (2.34b), and (2.35) of the functions appearing in 
(D2), and the knowledge that none of the n - 2  zeros appearing in the 
summation for C are explicitly dependent on p, the evaluation of the terms 
in (D3) in the limit p =  0 is relatively straightforward; care need only be 
taken with the exact zero at p appearing in the function F00. The results 
are 

A* = 4 sin 2/* (D4a) 

B1 
B* = 4 sin 2/*w- (D4b) 

/~2 

+r (D4c  
[ =  1 

with 

,,,2 , # - i  (<,)* 
B 1 = - 1  + ~, _-~7co s (D5a) j=, (1+~  2 2/*)2 \ @ /  

n / 2 -  I ~j 
B 2 - 1 + 2 ( N - l ) c ~  2/,/2 4sin2/ t  ~ (D5b) 

sin/* , = 1 1 + ~ - 2~i cos 2# 

Here again we have used the fact that the zeros are in reciprocal pairs, 
apart from the zero at p and the stationary zero at 1 (recall also that n is 
even). 

A system of equations for the derivatives of the zeros is readily derived 
from the Bethe ansatz equations (2.47). As remarked in Section 2.4, the 
zero at p satisfies one of the equations, leaving the system given in (2.58). 
The stationary zero satisfies one of these equations (again, the key point is 
that the zeros are in reciprocal pairs) and this system can further be written 
a s  

Z-4 E f(x~,) ]N f ( z -2r  f(p)~ 2(,),,1_12 f ( z  2~/~) 
[_f(x-'~,)[ f(x~(J) f(Pz2~,) ~ 1  f(z2~;/~k) - 1, j = 1,..., n - 2 

~/ (D6) 

On taking a logarithmic derivative, each zero must satisfy 

NE1 + E2 + E3 + E4 = 0 

where 

(D7) 

El -- 1 0f(z~j) 1 Of(z-l~') (D8a) 
f(z~j) 0p f ( z - ' { j )  @ 
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E2 - 12 Of(z -- 2~j) 1 ~f(~2~j) 

1 8f(pz -2~j) 1 8f(pz2~) 
E 3 - -  2 

f(PZ- ~.j) 8p f(pz~(j) @ 

f ( z 'U~)  @ 3 

On defining the quantity 

(DSb) 

(DSc) 

(D8d) 

UJ = (aU@)* 

we find that Eqs. (D8), in the limit p =  0, reduce to 

(D9) 

- 2i(sin #) uj 
E~*= 

1 + ~2-  2[j cos # 

2i(sin 2/,) uj 
E?= 

1 + [) - 2[j cos 2p 

E]  = 2i(sin 2# ) ( [ j -  ~f  1) 

E ~ = 2 i s i n 2 #  ~, 2 ; 
= 1 ~j + ~k - 2~j~a- cos 2/* 

(Dl0a) 

(D10b) 

(DlOc) 

(D10d) 

n/2 1 

GjU/+ ~ Hjeu~=2(cos/*)([j l-[j) ,  j = l , . . . , n - 2  (Dl l )  
k = l  

Gf= G}l) + (i(2) 
�9 . - - j  

( 1 , ) 
H/k=2~jcos/~ 1 +  2 2 -- 2 2 (j~e 2~j~ k cos 2/* - 2~j~ e cos 2/* 

with 

G}It 2 cos # N 4~j cos ,u (D12c) 
- -~ ~4 _ 2~  cos 2# l + ~ - 2 ~ j c o s 2 ~  l + ~ 2 - 2 ~ j c o s ~  1+ 

n / 2 -  1 

G!2t= 2 cos/* ! 
k = !  

(D12a) 

(D12b) 

[k [~+[2  2 ~ j [ ~ c o s 2 ~ - I  2 2 - + [)[k - 2~j[k cos 2# 

(D12d) 

where 

Insertion of these results into (D7) leads to a linear, nonhomogeneous 
system of equations for the uj. Specifically, this system of equations can be 
written in the form 
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The system (DI1) is invariant under the transformation (j ~ ( j~,  so 
that half of the equations are redundant; we need only consider solving 
( D l l )  for UJ with j =  1 ..... n / 2 -  1. Note that all of the uj vanish in the Ising 
limit # =  ~z/2 and the only contribution to (D1) is from the term (D4a). 

Finally we remark that the above equations can be written in perhaps 
a more elegant form by setting (j = e x p ( -  2e/). In this case one could alter- 
natively consider the Bethe ansatz equations in the form (2.59). We adopt 
this approach for the derivatives with respect to/~. 

D2. Marginal Derivatives 

Here we are actually at criticality (we suppress the asterisk notation 
for convenience). We can consider eigenvalues (2.67) and (2.68) in the form 

n/2 cosh 2c 9 -  cos 2# 
T~ In[ ~os-h -2~ --- ] (D13) 

/ =  1 

,,/2 1 cosh 2c~j- cos 2# (D14) 
Tl = E l~ cosh 2c~j - 1 

i =  1 

where the quantity E is defined in (2.69). The logarithmic derivatives are 

1 OTo E R  j 
To Ola /= 1 

t OT1 1 OE ,,/2 - 1 

T 1 0# E 0# /= 1 

(D15) 

Rj (D16) 

where we have set 

wj sinh 2ej + sin 2# w/sinh 2 ~ / ]  
R j =  2 I_ co-~ ~2~ ~-c~s ~2- fi c~sh 2~-~.-] J 

(D17) 

and defined the derivative WJ by 

From (2.69) we have 

•E ,/2-1 4(sin/~)(3 cos 2 ~ - -  1 ) 

j = l  

,/2 1 4(sin/1 sin 2/~)(wj sinh 2c9+ sin 2#) 
+ ~ (cosh 2cr cos 2/~) 2 j = l  

(D18) 

(D19) 
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To derive equations for the wj we consider the Bethe ansatz equations 
(2.58) and (2.59) with p = 0 .  In particular, we write these equations as, 
respectively, 

n/2 

Xqffc 9, #/2) = 2rtlj + Z 
k = l  

[~o(c 9 - c~,/x) + q~(,/+ "k, /~)]  

Nq)(r 9, #/2) = 2xlj + ~o(~/, #) + 
n / 2 -  1 

2 
k = l  

( j =  1 ..... n/2)  (D20) 

[<o(: 9 -  c~, ~) + ~o(~j + ~,, U)] 

( j =  1 ..... n/2- 1) (D21) 

We wish to differentiate these equations with respect to /~. From the 
definition (2.53) of the function q)(e, #) we have, after some algebra, the 
intermediate results 

&~ ( sin & ) ~# = 2# ~ -  sinh 2a /2(~, #) (D22a) 

&p(~,#/2)_(s in  ~. 1 2 ~ ) n  @ #~-~-~  sinh @ ' 2 )  (D22b) 

where we have defined the quantity f2(e,/~) by 

1 
f2(c~,/~) = cosh 2 a _ cos2/x (D23) 

Given these results, the system of equations associated with the eigen- 
value To can be written in the form 

n/2 

UjWj+ ~ Vjkwk= Wj, j= 1 ..... n/2 (D24) 
k ~ l  

where 

Uj = N(sin #) ;2(c9,/~/2) - 2(sin 2#) f2(2c9, #) 
n/2 

- (sin2#) ~ [(2(~j--~k, /~)+~(eg+~k,#)  ] 
k = l  

# j  

V~k = (sin 2/~) [s 9 - ~k,/t) - (2(~j + c~k, ~)] 

(D25a) 

(D25b) 
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and 

Wj = �89 2ctj) (2(~j, #/2) - (sinh 4c~j) (2(2c~j, #) 

n/2 

- ~ { [sinh 2(c~j- c~k) ] f 2 ( ~ j -  ctk, #) 
k = l  

+ [sinh 2(ej + c~,)] g2(~j + ~ ,  it)} (D25c) 

The  equat ions  associated with T1 are of the same form as (D24), 
except with j, k = 1 ..... n / 2 -  1. Slight modif icat ions arise, however,  f rom the 
extra term in (D21). Rather  than  writing the equat ions  out  in full, we men-  
t ion only that  the quantit ies - (sin 2/z) f2(c~/, #) and - (sinh 2c~j) f2(~j, it) 
need to be added to, respectively, Eqs. (D25a)  and (D25c). 

Finally, we remark  that  the solution of the systems (D11) and (D24) 
posed no numerical  problems;  again we used a s tandard  l ibrary 
package3471 
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